Revised: 5 December 2018

ARTICLE

Extracellular hemoglobin combined with an O_2 -generating material overcomes O_2 limitation in the bioartificial pancreas

Anne Mouré¹ | Elodie Bacou¹ | Steffi Bosch¹ | Dominique Jegou¹ | Apolline Salama^{1,2} | David Riochet³ | Olivier Gauthier⁴ | Gilles Blancho^{2,5} | Jean-Paul Soulillou^{2,5} | Denis Poncelet⁶ | Eric Olmos⁷ | Jean-Marie Bach¹ | Mathilde Mosser¹

¹Immuno-Endocrinology Unit (IECM), Oniris, INRA, Université Bretagne Loire, Nantes, France

²Centre de Recherche en Transplantation et Immunologie UMR 1064, INSERM, Université de Nantes, Nantes, France

³Service de Pédiatrie des Maladies Chroniques, CHU de Nantes, Nantes, France

⁴Department of Experimental Surgery, CRIP, Oniris, Nantes, France

⁵Institut de Transplantation Urologie Néphrologie (ITUN), CHU Nantes, Nantes, France

⁶Department of Process Engineering for Environment and Food Laboratory (GEPEA), UMR CNRS 6144, Oniris, Nantes, France

⁷Laboratoire Réactions et Génie des Procédés (LRGP), Université de Lorraine, CNRS, Nancy, France

Correspondence

Jean-Marie Bach and Mathilde Mosser, Immuno-endocrinology Unit, Atlanpôle, La Chantrerie, CS40706, F-44307 Nantes Cedex 03, France. Email: jean-marie.bach@oniris-nantes.fr;

mathilde.mosser@oniris-nantes.fr

Funding information

Agence Nationale de la Recherche (ECTIS IHU program, France), Grant/Award Number: ANR-10-IBHU-005; Pays de la Loire Region (Xenothera program, Nantes, France), Grant/ Award Number: 2011-1296; University of Nantes (Interdisciplinary program, Nantes, France), Grant/Award Number: 2017-2203

Abstract

The bioartificial pancreas encapsulating pancreatic islets in immunoprotective hydrogel is a promising therapy for Type 1 diabetes. As pancreatic islets are highly metabolically active and exquisitely sensitive to hypoxia, maintaining O_2 supply after transplantation remains a major challenge. In this study, we address the O₂ limitation by combining silicone-encapsulated CaO₂ (silicone-CaO₂) to generate O₂ with an extracellular hemoglobin O2-carrier coencapsulated with islets. We showed that the hemoglobin improved by 37% the O₂-diffusivity through an alginate hydrogel and displayed antioxidant properties neutralizing deleterious reactive O_2 species produced by silicone-CaO₂. While the hemoglobin alone failed to maintain alginate macroencapsulated neonate pig islets under hypoxia, silicone-CaO₂ alone or combined to the hemoglobin restored islet viability and insulin secretion and prevented proinflammatory metabolism (PTGS2 expression). Interestingly, the combination took the advantages of the two individual strategies, improved neonate pig islet viability and insulin secretion in normoxia, and VEGF secretion and PDK1 normalization in hypoxia. Moreover, we confirmed the specific benefits of the combination compared to silicone-CaO₂ alone on murine pseudo-islet viability in normoxia and hypoxia. For the first time, our results show the interest of combining an O_2 provider with hemoglobin as an effective strategy to overcome O_2 limitations in tissue engineering.

KEYWORDS

bioartificial pancreas, extracellular hemoglobin, oxygen supply, pancreatic islet, tissue engineering, Type 1 diabetes

1 | INTRODUCTION

vein has been shown to achieve 44% insulin independence 1 year after transplantation (Lablanche et al., 2015; Shapiro et al., 2006). However, the shortage of human donor organs and the need for lifelong immunosuppressive treatment to prevent the rejection of transplanted islets limit extension of this approach to a larger T1D patient population

-WILEY-BIOTECHNOLOGY

(Okere, Lucaccioni, Dominici & lughetti, 2016). The development of a bioartificial pancreas (BAP) based on encapsulated pancreatic islets has been of growing interest to overcome the main hurdles to pancreatic islet transplantation. Encapsulation of islets in alginate hydrogel has been extensively studied to prevent instant blood-mediated inflammatory reaction (IBMIR, a major cause of loss of islets grafted in the liver; Naziruddin et al., 2014) and could prevent systemic immunosuppressive treatments that have to be used (Dufrane, Goebbels & Gianello, 2010; Ludwig et al., 2013, 2017).

Today, xenotransplantation of pig pancreatic islets remains the most promising complement to allotransplantation to address donor organ shortage. Pigs (*Sus scrofa domesticus*) are an almost unlimited and manageable source of islets with stable function and differentiated status. In particular, neonate pig islets (NPIs) can be isolated easily with high yields (Korbutt et al., 1996; Ricordi et al., 1990). Alginate microencapsulated NPIs transplantation in the peritoneal cavity has been successfully evaluated in clinical trials for unstable human T1D, with a significant reduction in the incidence of severe complications (Elliott, 2011; Matsumoto et al., 2016). Unlike microencapsulation, transplantation of islets macroencapsulated in a single larger device allows for easier monitoring, removal, and replacement of the BAP with minimal risk. Alginate macroencapsulated human islets were proven to be functional when grafted subcutaneously in humans for several months (Ludwig et al., 2013).

Transplantation of a BAP based on macroencapsulated pig islets seems to be a promising alternative for overcoming the main hurdle to pancreatic islet transplantation. However, one of the main critical microenvironment parameter that limits the BAP efficacy is an insufficient O2 supply to the encapsulated cells after transplantation (Dulong & Legallais, 2007; Komatsu et al., 2017). Indeed, O₂ is only provided by passive diffusion through the immunoprotective capsule, whereas a high density of islets consuming a large amount of O₂ is required to reach therapeutic efficiency with implantable device size (Barkai, Rotem & de Vos, 2016). Furthermore, partial O₂ pressure (pO₂) in extravascular transplantation sites, including the subcutaneous space. is generally low (around 10 mm Hg, 1% O₂) compared to the pancreas (40 mm Hg; Carlsson, Palm, Andersson & Liss, 2001; Carlsson & Palm, 2002; Jansson & Carlsson, 2002; Menger et al., 1989). This lack of O₂ is critical during the period preceding the neovascularization around the capsules, which occurs approximately 1 to 2 weeks post-transplantation (Jansson & Carlsson, 2002; Jones et al., 2007; Morini et al., 2007). Low O2 tension has been shown to induce hypoxia-related oxidative stress (Rodriguez-Brotons et al., 2016a) and metabolic changes (Sato et al., 2011; Sato, Inoue, Yoshizawa & Yamagata, 2014) in islets resulting in insulin secretion impairment (Dionne, Colton & Yarmush, 1993), proinflammatory factor secretion (Brandhorst, Brandhorst, Mullooly, Acreman & Johnson, 2016), and finally islet cell death (de Groot et al., 2003; Sato et al., 2014). In these conditions, designing a BAP without adequate O₂ supply is likely to lead to long-term graft failure and therapeutic inefficiency.

Extensive efforts have been made to enhance O_2 supply to encapsulated islets. The gas delivery is the most advanced technique but requires multiple daily O_2 -gas injections (Ludwig et al., 2013; Barkai

et al., 2016). However, the efficiency of this system is limited by the low O₂ diffusivity in the large clinically relevant device (Carlsson et al., 2018). Chemical O2-generating biomaterials, such as solid calcium peroxide (CaO₂), are promising to store large quantities of O_2 in an aqueous medium. Pedraza, Coronel, Fraker, Ricordi, and Stabler (2012) designed a polydimethylsiloxane-CaO2 device (10 mm diameter, 1 mm height) able to release O₂ for 3 weeks. This device was shown to prevent the apparition of necrotic cores of adult porcine islets cultured in normoxia (McQuilling, Sittadjody, Pendergraft, Farney, & Opara, 2017) and the hypoxia damage of murine MIN6 beta cells (Pedraza et al., 2012; Forget et al., 2017), rat pancreatic islets (Pedraza et al., 2012) and NPIs (Lee et al., 2017) for few days. However, according to Pedraza et al. (2012), the use of this device in 3D-construct leads to O2 gradients and inhomogeneous distribution throughout the BAP. Moreover, such O₂-generating device could produce deleterious reactive oxygen species (ROS) such as hydrogen peroxide (H₂O₂; Camci-Unal, Alemdar, Annabi & Khademhosseini, 2013; Forget et al., 2017; McQuilling et al., 2017). O₂-carriers, such as hemoglobin, can store and release O₂ according to the pericellular environment pO2 (Avila et al., 2006; Khattak, Chin, Bhatia & Roberts, 2007; Le Pape et al., 2017a). By increasing O₂ saturating concentration, hemoglobin could increase the driving force and the transfer rate of O₂ through the encapsulating material (Le Pape et al., 2017b; Schrezenmeir, Hyder, Vreden, Laue & Mueller-Klieser, 2001). Human hemoglobin is not stable in the extracellular environment and has been shown to induce oxidative stress when used as O2-carrier or blood substitute (Alayash, 2014). More recently, native extracellular hemoglobin from the Arenicole marine worm (Arenicola marina; HEMOXCell, Hemarina, Morlaix, France) has been described to bind 156 O₂ molecules per hemoglobin molecule and to release O₂ through a sigmoid response according to cellular O₂ requirements (Le Pape et al., 2015). The main limitation of O₂-carriers remains the low amount of O₂ stored compared to islet consumption. Rapidly the islets deplete this reservoir if an exogenous O₂ supply is not provided.

In the present study, we evaluated the pertinence of a combination of an O₂-carrier and an O₂-generating biomaterial, which could better prevent hypoxia in islet engineering devices. We first assessed the antioxidant properties of the extracellular HEMOXCell hemoglobin and its effect on O₂ diffusivity in alginate hydrogel. The biocompatible O₂-generating silicone-encapsulated calcium peroxide device (silicone-CaO₂), the O₂-carrier HEMOXCell hemoglobin and the combination of both were then evaluated for their ability to prevent hypoxia-induced damage to alginate macroencapsulated NPIs.

2 | MATERIALS AND METHODS

2.1 | Islet isolation and encapsulation

Pig experiments were approved by the Pays de la Loire Ethics Committee (Approval 01074.01/02) and were carried out in compliance with the relevant European regulation guidelines (Directive 2010/63/EU). Neonate pig islets (NPIs) were isolated from the pancreas of 5- to 15-day-old Yucatan pigs (INRA PEGASE, Rennes, France) as described previously by Korbutt et al. (1996). NPIs were cultured in Ham's F10 (Dutscher,

Brumath, France) supplemented with 10 mM glucose, 50 mM IBMX, 2 mM L-glutamine, 10 mM nicotinamide, 100 IU/ml penicillin and 100 mg/ ml streptomycin and 0.5% BSA (w/v; NPIs culture medium). NPIs were quantified using the canonical standardized Islets Equivalent Quantities (IEQ, Ricordi, 1990). Clinical grade low viscosity and high guluronate sodium alginate 2.2% w/v (PRONOVA UP LVG, Novamatrix, Sandvika, United Kingdom) was used for islet encapsulation. Following a 24 hr culture in normoxia (37°C, 20% O₂, 5% CO₂), NPIs were gently mixed in the alginate (2500 IEQ/ml), and alginate macrobeads, 3 mm in diameter, were produced by extrusion through a 23 G needle using a syringe driver, into a 100 mM CaCl₂ gelation bath for 5 min. The alginate beads were cultured in NPI culture medium supplemented with 10% porcine serum (instead of BSA).

2.2 | Oxygen supplier and carrier

The O₂-generating biomaterial was prepared by mixing calcium peroxide (Sigma-Aldrich) in polydimethylsiloxane (silicone, Sylgard® 184, Sigma-Aldrich) in a ratio 1:3 (weight/weight) as described by Pedraza et al. (2012). A volume of 100 µl per well of silicone-CaO₂ was degassed and cross-linked in 48-well plates during 24 hr at 60°C. HEMOXCell hemoglobin (Hemarina, Morlaix, France) was mixed with the alginate before crosslinking into alginate macrobeads. In accordance with the literature (Rodriguez-Brotons et al., 2016a; Le Pape et al., 2017a, 2017b), we screened concentrations of 50, 125, and 250 µg/ml of HEMOXCell on their ability to increase O_2 diffusivity.

2.3 | Experimental design

To assess our oxygenation strategy, eight alginate beads containing NPIs (2500 IEQ/ml alginate) with or without $250 \mu g/ml$ HEMOXCell were cultured in $500 \mu L$ of culture medium, with or without the silicone-CaO₂ disk (Supporting Information Figure 1). Alginate-encapsulated NPIs were cultured at $37^{\circ}C - 5\%$ CO₂ either in a normoxia (145.7 mm Hg O₂) or in a hypoxia chamber (STEMCELL Technologies Grenoble, France) filled with a 1% O₂ atmosphere (10 mm Hg, Messer, Nantes, France) mimicking O₂ tension in the BAP after extravascular transplantation (Carlsson et al., 2001). NPI analysis and culture medium renewal were performed after 2, 5, and 7 days. Normoxic (Ct-N) and hypoxic (Ct-H) controls correspond to alginate-encapsulated NPIs cultured without HEMOXCell nor silicone-CaO₂.

2.4 | Islet viability assessment

NPI viability was qualitatively assessed by staining and imaging with ethidium bromide (red dead cells) and calcein AM (green viable cells; Live&Dead, Life Technologies, Saint Aubin, France). Cell death was evaluated by quantifying lactate dehydrogenase activity (Absorbance unit [AU], LDH, Roche, Meylan, France) in culture supernatants. NPI intracellular ATP content (Relative light unit [RLU]) was determined using the CellTiter-Glo® 3D Cell Viability assay (Promega, Charbonnieres-les-Bains, France). DNA content of encapsulated islets was assessed using the CyQuant Cell Proliferation Assay kit (Life Technologies). LDH absorbance, ATP luminescence, and DNA fluorescence were measured on a FLUOstar OPTIMA luminometer (BMG Labtech, Champigny-sur-Marne, France).

2.5 | Insulin secretion assay

Insulin secretion (ELISA quantification in supernatants, Mercodia, Upsala, Sweden) was evaluated by 30 min sequential incubations of alginateencapsulated islets in basal medium (RPMI [PAA, Velizy-Villacoublay, France] with 2 mM L-glutamine, 0.5% BSA and 2.8 mM glucose), stimulation medium (basal medium supplemented with 20 mM glucose and 10 mM theophylline) and then basal medium again (Supporting Information Figure 2). Theophylline was used as insulin secretion potentiator as NPIs are immature islets (Korbutt et al., 1996). Insulin secretion stimulation indexes were insulin concentrations in supernatants with glucose/theophylline divided by basal level.

2.6 | Transcriptomic analysis

NPIs were recovered from alginate beads by incubation for 20 min at 37°C in decapsulating solution (5 mM citrate and 1 mM EDTA in PBS). Total RNA (NucleoZOL, Macherey-Nagel, Düren, Germany) was reversely transcribed (MLV reverse transcriptase, Invitrogen, Waltham, MA). Real-time quantitative polymerase chain reactions (RT-PCR) CFX 96 Touch system (BioRad, Hercules, CA) were performed with Hot FirePol EvaGreen mix (Solis Biodyne, Tartu, Estonia). The expression of genes encoding for RPL19 (Ribosomal protein L19) and PPIA (Peptidylprolyl isomerase A) were used to standardize the target gene expression of PDK1 (Pyruvate dehydrogenase kinase 1), HO-1 (Heme oxygenase 1), and PTGS2 (Prostaglandin-endoperoxide synthase 2). Primers used for RT qPCR are listed in Table 1.

2.7 | IL-6, MCP1, and VEGF quantification

Proinflammatory IL-6 (R&D systems, Lille, France) and MCP1 (Monocyte chemoattractant protein 1) secretion, and proangiogenic VEGF (vascular endothelial growth factor) secretion were assayed by ELISA in islet culture supernatants (Clinisciences, Nanterre, France).

2.8 | Reactive oxygen species

Silicone-CaO₂ was incubated for 2, 5, 7, and 14 days in NPI culture medium, with or without HEMOXCell in normoxia. ROS in culture supernatants were quantified by chemiluminescence after addition of Horseradish peroxidase (8 U/ml, Sigma-Aldrich) and luminol (50μ M, Sigma-Aldrich) as described by Dahlgren, Karlsson, and Bylund (2007). Luminescence was recorded immediately (FLUOstar OPTIMA). Hydrogen peroxide (Gifrer-Barbezat, Declines, France) was used as a standard.

2.9 | Oxygen diffusivity in alginate hydrogel

The effect of HEMOXCell on oxygen transfer through the alginate hydrogel was assessed in a bioreactor. Alginate macrobeads

TABLE 1 RT qPCR primer sequences

Target	Forward	Reverse
RPL19	AACTCCCGTCAGCAGATCC	AGTACCCTTCCGCTTACCG
PPIA	CACAAACGGTTCCCAGTTTT	TGTCCACAGTCAGCAATGGT
PDK1	CAGGACAGCCAATACAAGTGGT	GTGGACTTGAATAGGCGGGTAA
HO-1	GCTGACCCAGGACACTAAGG	GGAGAGGACGCTGAGCTG
PTGS2	CTCTTCCTCCTGTGCCTGAT	TTTTTCCACAACTTCCTTTGAA

Note. HO-1: heme oxygenase 1; PDK1: pyruvate dehydrogenase kinase 1; PPIA: peptidylprolyl isomerase A; PTGS2: prostaglandin-endoperoxide synthase 2; RPL19: ribosomal protein L19.

supplemented or not with HEMOXCell were first deoxygenated in PBS (Eurobio, Courtaboeuf, France) supplemented with 1.8 mM CaCl₂ (PBS-Ca²⁺) and stirred at 200 rpm in a hypoxic atmosphere (N₂). After reaching 0% O₂, the deoxygenated PBS-Ca²⁺ solution was discarded and rapidly replaced by a previously air-saturated PBS-Ca²⁺ solution and stirred at 100 rpm. Dissolved oxygen concentrations in the PBS-Ca²⁺ solution were measured using a Clark type oxygen electrode (InPro 6850i, Mettler-Toledo, Viroflay, France) and Rhapsody software (Pierre Guerin Technologies, Niort, France).

2.10 | Statistical analysis

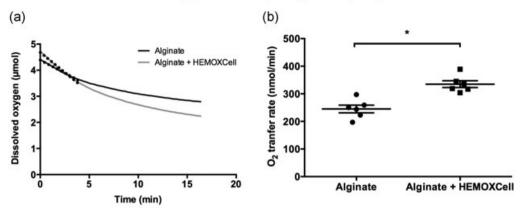
Data are represented as the mean \pm SEM percentage of the normoxic control without HEMOXCell or silicone-CaO₂ (Ct-N). Minimums of three independent experiments were performed with biological duplicates. The significance of the differences between the groups was evaluated using a Mann–Whitney or paired Wilcoxon test with *p* value < 0.05 considered as significant.

3 | RESULTS

3.1 | O₂ diffusivity and ROS

To assess the effect of HEMOXCell on O_2 transfer, the dissolved O_2 concentrations were measured in an initially air-saturated PBS-Ca²⁺ solution containing deoxygenated alginate beads with or without HEMOXCell (Figure 1a). O_2 transfer rate (Figure 1b) through the hydrogel was calculated as the initial slope of the dissolved O_2 quantities kinetics curves (dotted black lines on Figure 1a). O_2 transfer rate was significantly higher in the alginate beads containing 250 µg/ml HEMOX-Cell than in the control alginate beads (p < 0.05, Figure 1b), while no improvement was achieved with 50 and 125 µg/mL HEMOXCell (data not shown). The quantitative impact of oxygen transfer rate on O_2 diffusivity in the hydrogel was determined (Supporting Information Data 1). Using the described model, it could be shown that addition of 250 µg/ml HEMOXCell improved O_2 diffusivity in alginate beads by 37% compared to the control. A concentration of 250 µg/ml HEMOXCell was thus chosen for the rest of the study.

Upon contact with water, encapsulated solid peroxide may produce cytotoxic ROS such as H_2O_2 . We thus quantified ROS in culture supernatants with silicone-CaO₂ ± 250 µg/mL HEMOXCell (Figure 1c). Silicone-CaO₂ produced high levels of ROS in supernatants from $58 \pm 21 \mu mol/l$ after 2 days of culture, to $573 \pm 115 \mu mol/l$ after 14 days (p < 0.05, Figure 1c). However, HEMOXCell significantly reduced the presence of ROS produced by silicone-CaO₂ near to the limits of detection (p < 0.05, Figure 1c).

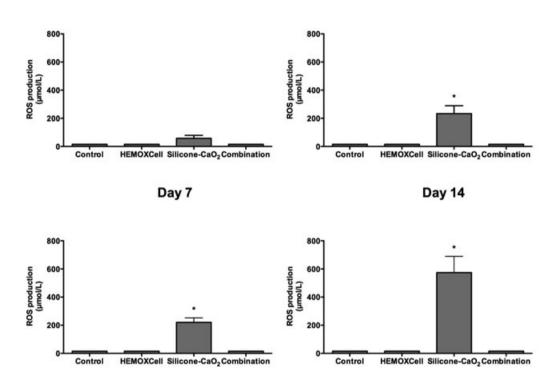

3.2 | Viability and function of encapsulated islets under normoxia

To assess the potential toxic side effects of our O₂ strategy on alginateencapsulated pancreatic islets. NPIs were cultured for up to 7 days under unlimited O₂ supply, that is at low islet density and with an oxygen tension of 21% O₂ (Brandhorst et al., 2016). Alginate-encapsulated NPIs in the presence of HEMOXCell or silicone-CaO2 showed good overall viability throughout in vitro culture in normoxia according to Live&Dead staining (Supporting Information Figure 3a). In presence of HEMOXCell, encapsulated NPI metabolic activity was decreased on Day 2 and increased on Days 5 and 7 as objectified by the ATP content compared to the normoxic control (Ct-N, p < 0.05, Figure 2a). On the other hand, silicone-CaO₂ alone induced a slight decrease in ATP content in alginateencapsulated NPIs on Day 7 compared to Ct-N (p < 0.05, Figure 2a). Furthermore, the combination of both enhanced the ATP content of alginate-encapsulated NPIs compared to Ct-N (significant on Day 7, p < 0.05, Figure 2a). The combination also enhanced significantly NPI ATP contents comparatively to silicone-CaO₂ alone at Days 5 and 7 (p < 0.05, Figure 2a). Besides, an important deleterious effect of silicone-CaO₂ was observed on MIN6 pseudo-islets (MPIs) viability (Supporting Information Figure 4a). Indeed, a significant drop of ATP content was observed from $22\pm6\%$ on Day 1 and up to $37\pm8\%$ after 6 days. As expected, the addition of HEMOXCell prevented the deleterious effect of silicone-CaO₂ on MPI viability as ATP content was not significantly different from Ct-N on days 1 and 6 and even increased on Day 3 (p < 0.01). Moreover, MPI ATP content was significantly increased by the combination compared to silicone-CaO₂ alone on Days 3 and 6 (p < 0.05).

HEMOXCell seemed to induce a slight increase in LDH released by NPIs compared to Ct-N on Day 7 of culture (p < 0.05, Figure 2b). Silicone-CaO₂ significantly decreased the level of LDH release in the NPI culture supernatant throughout culture (p < 0.001 on Day 2, p < 0.0001 on Day 5 and p < 0.05 on Day 7, Figure 2b). In the presence of the combination, LDH release increased over time to become significantly higher compared to Ct-N after 7 days of culture (p < 0.05, Figure 2b). Insulin secretion response assays following glucose and theophylline stimulation were performed on encapsulated NPIs (Supporting Information Figure 2).

BIOTECHNOLOGY -WILEY 5

Oxygen diffusivity in alginate hydrogel



Reactive oxygen species production by silicone-CaO₂ disks

Day 2

Day 5

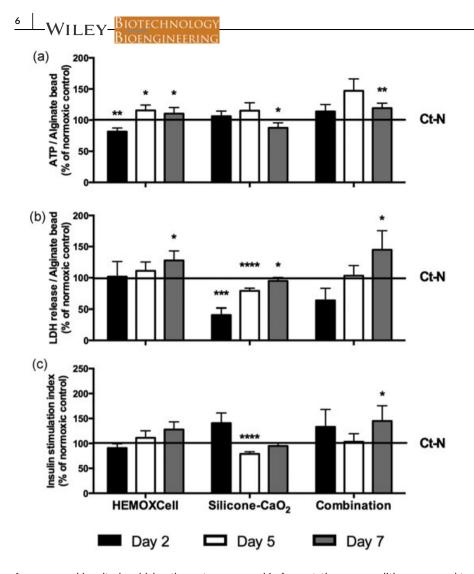


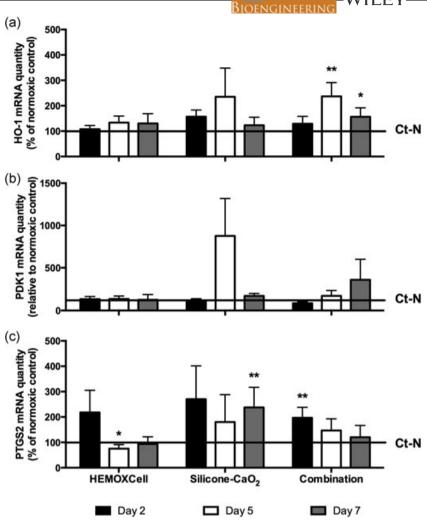
FIGURE 1 O_2 diffusivity and reactive oxygen species (ROS). (a) Dissolved O_2 quantities kinetics. Deoxygenated alginate beads containing or not containing HEMOXCell were placed in air-saturated PBS-Ca²⁺ solution in a stirred bioreactor. Dissolved O_2 concentrations were measured in the PBS-Ca²⁺ solution during the O_2 transfer assay. (b) O_2 transfer rate in alginate beads (n = 6). The O_2 transfer rates (nmol/min) were measured as the initial slope of the dissolved O_2 quantities kinetics curves during the first minutes (dotted black lines, Figure 1a). *p < 0.05compared to the control (Wilcoxon). (c) ROS measured in NPI culture medium containing or not silicone-Ca O_2 and/or HEMOXCell in normoxia (n = 7). Control was NPI culture medium without silicone-Ca O_2 or HEMOXCell. ROS production was assessed after 2, 5, 7 and 14 days in culture supernatants. *p < 0.05 compared to the control (Wilcoxon)

HEMOXCell alone displayed no effect on NPI function. On the other hand, silicone-CaO₂ alone significantly decreased the NPI insulin secretion index on 5 days of culture (p < 0.0001, Figure 2c). Interestingly, the combination of the hemoglobin and silicone-CaO₂ maintained NPI

insulin secretion indexes similar to Ct-N and they were even significantly increased on 7 days of culture (p < 0.05, Figure 2c).

The effect of the proposed O_2 supply strategies was also assessed in normoxia on the islet oxidative stress response (HO-1), metabolic shift

from an aerobic mitochondrial pathway to an anaerobic fermentation (PDK1, Kim, Tchernyshyov, Semenza & Dang, 2006) and proinflammatory responses (PTGS2, Rodriguez-Brotons et al., 2016a; Vivot et al., 2014). HEMOXCell alone did not significantly modify HO-1, PDK1 and PTGS2 mRNA expression in encapsulated NPIs compared to Ct-N (Figures 3a,b) except a slight decrease in PTGS2 mRNA level on Day 5 (p < 0.05, Figure 3c). Silicone-CaO₂ combined or not with HEMOXCell seemed to induce an increase in HO-1 mRNA expression on Days 5 and 7 of culture compared to Ct-N (p < 0.05, Figure 3a). The enhancement by silicone-CaO₂ of the quantities of transcript PDK1 at Day 2 (though not significant, Figure 3b), PTGS2 at all time points studied (significant on Day 7 compared to Ct-N, p < 0.01, Figure 3c) seemed to be reversed by the addition of HEMOXCell, excepted for PTSG2 at Day 2, which stayed higher than Ct-N (p < 0.01, Figure 3c).


3.3 | Viability of encapsulated islets under low O_2 tension

The efficiency of the oxygenation strategy was tested on encapsulated NPIs cultured under low O_2 tension (1% O_2). According to Live&Dead staining, NPI viability seemed to be moderately affected by hypoxia as only few red-stained cells were detected in the hypoxic FIGURE 2 Viability and function of encapsulated islets under normoxia. NPIs (2,500 IEQ/ml alginate) were cultured for 2, 5, and 7 days in normoxia with or without silicone-CaO₂ and/or HEMOXCell. (a) intracellular ATP content in encapsulated islets (n = 4-5). (b) quantification of lactate dehydrogenase (LDH) released by encapsulated islets in culture supernatant (n = 4-5). (c) insulin secretion stimulation indexes of encapsulated islets calculated from glucose-stimulated insulin secretion assays (n = 3-5). Results from independent experiments are expressed as mean percentage ± SEM of the control without HEMOXCell nor silicone-CaO₂ (Ct-N) (horizontal lines). *p < 0.05, **p < 0.01, ***p < 0.001, and ****p < 0.0001 compared to Ct-N (Mann-Whitney)

condition compared to normoxia (Supporting Information Figure 3b). However, the hypoxic environment significantly diminished the NPI's ATP and DNA contents on Days 2 and 7 compared to Ct-N (p < 0.05, Figures 4a,b respectively), whereas the LDH release and HO-1 mRNA expression were significantly enhanced respectively on Day 7 (p < 0.05, Figure 4c), on Days 5 and 7 (p < 0.01, Figure 4d). NPIs in the presence of HEMOXCell alone displayed very similar trends to those of the hypoxic control (Ct-H). HEMOXCell did not prevent the effects of hypoxia on NPI ATP (Figure 4a), DNA content (Figure 4b), LDH release (Figure 4c), HO-1 mRNA expression (Figure 4d). Silicone-CaO₂ alone, or in combination with HEMOXCell, restored NPI ATP, DNA, and LDH values close to Ct-N (Figures 4a-c) and even increased DNA content on Day 7 (p < 0.05, Figures 4b). At Day 5, the combination increased ATP content by 67 ± 18% compared to Ct-N (p < 0.01, Figure 4a). Silicone-CaO₂ ± HEMOXCell seemed to reduce HO-1 mRNA expression levels on Day 5 and 7, but did not restore its normoxic level of expression (Figure 4d).

Concerning pseudo-islets, MPI viability without O₂ strategy was significantly affected all along the culture duration with a drop up to $55 \pm 2\%$ of the ATP content compared to Ct-N (*p* < 0.001, Supporting Information Figure 4b. As observed with NPIs, HEMOXCell alone did not restore MPI ATP content, whereas silicone-CaO₂ alone successfully

ECHNOLOGY

FIGURE 3 Metabolism of islets under normoxia. RT qPCR was performed on decapsulated NPIs after 2, 5, and 7 days of culture in a normoxic environment with or without HEMOXCell and silicone-CaO₂. (a), (b), and (c) respectively represent the mRNA expression of HO-1, PDK1, and PTGS2 in islets (n = 3-6). Results from independent experiments are expressed as mean percentage ± SEM of the control without HEMOXCell nor silicone-CaO₂ (Ct-N; horizontal lines). *p < 0.05, **p < 0.01compared to Ct-N (Mann–Whitney)

maintained ATP values similar to Ct-N. Interestingly, the combination provided significant higher ATP contents than silicone-CaO₂ alone on Days 3 and 6 (p < 0.05, Supporting Information Figure 4b).

3.4 | Function of encapsulated islets under low O₂ tension

Insulin secretion by the alginate-encapsulated islets was evaluated following glucose + theophylline stimulation on 2, 5, and 7 days of culture (Supporting Information Figure 2 and Figure 5). As shown in Figure 5a, low oxygen tension significantly impaired NPI functionality after 2 days of culture: insulin secretion stimulation indexes were 5.1 ± 0.9 in Ct-N and 2.7 ± 0.4 in the Ct-H (p < 0.01, Figure 5a); besides, no significant difference was observed between the normoxic and hypoxic conditions after 5 and 7 days of culture. Despite no O₂ limitation (Ct-N), the NPIs stimulation indexes were already significantly decreased from 5 days of culture suggesting the lack of O₂ is not solely responsible for reduced secretory function after 2 days of culture. Therefore, it would be interesting to functionalized alginate with molecules known to promote islet microenvironment such as molecules from extracellular matrix (Llacua, Faas & De Vos, 2018). On Day 2, HEMOXCell alone failed to restore the Ct-N stimulation indexes (p < 0.001, Figure 5b). Silicone-CaO₂ alone and its combination with HEMOXCell maintained the insulin stimulation indexes on Day 2 compared to Ct-N (Figure 5b), consistently enhanced it compared to Ct-H (p < 0.002).

Consistently, the hypoxic environment in the presence or the absence of HEMOXCell triggered increased PDK1 mRNA expression (only significant on Day 7, p < 0.01, Figure 5c). Addition of the silicone-CaO₂ disk failed to prevent this increased PDK1 expression compared to Ct-N on Day 5 and 7 (p < 0.01, Figure 5c). The combination significantly decreased PDK1 mRNA expression on Day 2 compared to Ct-N (p < 0.01) and restored Ct-N expression level on Days 5 and 7 (Figure 5c).

3.5 | Proinflammatory and proangiogenic state of encapsulated islets under low O_2 tension

To evaluate the effect of silicone-CaO₂ \pm HEMOXCell on activation of the inflammatory pathway in pancreatic islets, we quantified the concentrations of IL-6 and MCP1 secreted in culture supernatant of NPIs (Figure 6a,b) as well as expression of the inflammatory marker PTGS2 (Figure 6c). Under low O₂ tension, IL-6 and MCP1 secretion by NPIs was significantly decreased by 22 \pm 11% and 30 \pm 10%

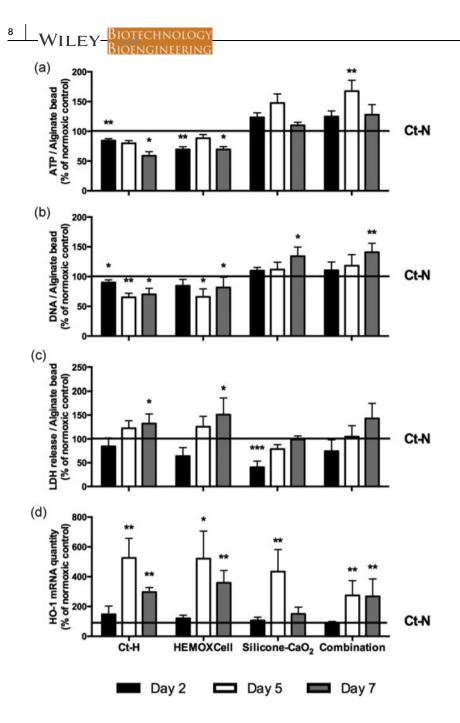
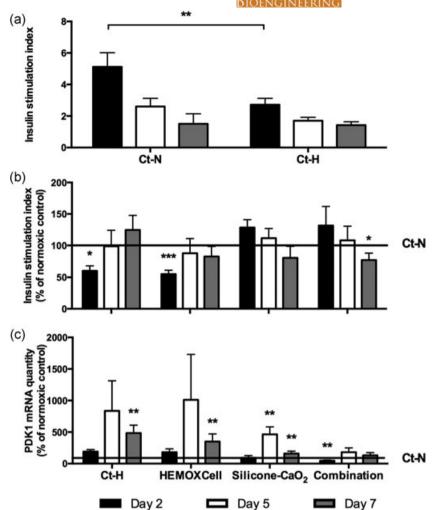



FIGURE 4 Viability of encapsulated islets under low O2 tension. NPIs were cultured for 2, 5 and 7 days in hypoxic conditions with or without silicone-CaO₂ and/or HEMOXCell. (a) intracellular ATP content in encapsulated islets representative of viable cell number (n = 4-5). (b) DNA content in encapsulated islets (n = 6). (c) cell lysis quantification in encapsulated islets by measuring lactate dehydrogenase (LDH) released in the culture supernatant (n = 4-5). (d) HO-1 mRNA expression in NPIs (n = 3-6). Results from independent experiments are expressed as the mean percentage ± SEM of the normoxic control without HEMOXCell nor silicone-CaO₂ (Ct-N; horizontal lines). *p < 0.05, **p < 0.01, ***p < 0.001 compared to Ct-N (Mann-Whitney)

respectively compared to Ct-N on Day 2 (p < 0.05, Figures 6a,b). In the presence of HEMOXCell or silicone-CaO₂ alone, IL-6 and MCP1 secretion seemed very similar to the hypoxic and normoxic conditions at all time points tested. Nevertheless, the HEMOXCell and silicone-CaO₂ combination induced a decrease of $39 \pm 18\%$ in IL-6 secretion on Day 7 (p < 0.05, Figure 6a). The combination also seemed to induce an increase in MCP1 secretion by NPIs on Day 2 (p < 0.05), which subsequently dropped below the Ct-N level on Day 7 (p < 0.05, Figure 6b). The hypoxic environment, with or without HEMOXCell, increased expression of the inflammatory marker PTGS2 mRNA on Day 5 and 7 of culture (p < 0.05, Figure 6c). This overexpression was completely inhibited in the presence of silicone-CaO₂, combined or not with HEMOXCell, as PTGS2 mRNA expression levels remained close to the normoxic values (Figure 6c). We evaluated VEGF release by pancreatic islets in our experimental conditions (Figure 6d). Hypoxia clearly enhanced the VEGF produced per NPIs by 410 ± 215% (p < 0.001), 197 ± 113% (p < 0.01) and 424 ± 298% (p < 0.05) respectively after 2, 5, and 7 days of culture compared to Ct-N. HEMOXCell enhanced the VEGF produced per NPIs by 657 ± 198% (p < 0.001), 467 ± 301% (p < 0.01) and 677 ± 471% (p < 0.01), respectively on 2, 5, and 7 days compared to Ct-N. The addition of HEMOXCell seemed to potentiate the effect of hypoxia on VEGF secretion by pancreatic islets (Figure 6d, Supporting Information Figure 5). Silicone-CaO₂ decreased the level of VEGF secreted by islets cultured in the hypoxic environment. Interestingly, the combination of the hemoglobin with silicone-CaO₂ increased NPI VEGF secretion compared to Ct-N by 143 ± 57% (p < 0.05), 70 ± 46% (p < 0.05) and 65 ± 71% (ns), after 2, 5 and 7 days of culture respectively.

FIGURE 5 Function of encapsulated islets under low O2 tension. NPIs were cultured for 2, 5 and 7 days. (a) insulin secretion stimulation indexes calculated from glucose-stimulated insulin secretion assays for encapsulated NPIs cultured in a normoxic or hypoxic environment (n = 4-5). Results from independent experiments are expressed as mean ± SEM. **p < 0.01 (Mann–Whitney). (b) insulin secretion stimulation index calculated from glucose-stimulated insulin secretion assays on encapsulated NPIs cultured in the hypoxia chamber with or without silicone- CaO_2 and/or HEMOXCell (n = 4-5). (c) PDK1 mRNA expression in NPIs (n = 4-5). For (b) and (c), results from independent experiments are expressed as the mean percentage ± SEM of the normoxic control without HEMOXCell nor silicone-CaO₂ (Ct-N) (horizontal lines). *p < 0.05, **p < 0.01, ***p < 0.001 compared to Ct-N (Mann-Whitney)

4 | DISCUSSION

In this study, we showed in vitro, that the combination of an O_2 -carrier and an O_2 -generating biomaterial provided an adequate O_2 supply to improve the function, the viability and the metabolism of encapsulated NPIs in a confined and hypoxic environment.

Of potential interest, we described that hypoxia did not induce increased IL-6 and MCP1 proinflammatory factor release by NPIs, unlike previous studies using rat (de Groot et al., 2003; Rodriguez-Brotons et al., 2016a), adult pig (Goto et al., 2010) and human (Brandhorst et al., 2016; Hals, Rokstad, Strand, Oberholzer & Grill, 2013) pancreatic islets under hypoxia. This weak impact of hypoxia on IL-6 and MCP1 secretion by NPIs could be related to their immaturity and relative resistance to hypoxic damages (Emamaullee, 2006). Nevertheless, we showed that low oxygen tension significantly damages NPI function, metabolism and viability from 2 to 7 days of culture. In keeping with the literature describing the impact of ischemia or hypoxia on human pancreatic islets (Brandhorst et al., 2016; Cantley et al., 2012; Giuliani et al., 2005; Hals, Rokstad, Strand, Oberholzer & Grill, 2013; Lai et al., 2009; Moritz et al., 2002), our results suggest that the innovative oxygen supply strategy developed in the present study may also meet the

challenges of hypoxia during allotransplantation of macroencapsulated human pancreatic islets.

The benefit of HEMOXCell was underlined for sustaining naked islet viability in a confined and hypoxic environment for a short 24-hr period (600 IEQ/ml, 2% O2) (Rodriguez-Brotons et al., 2016b), while our results indicated that this hemoglobin failed to prevent islet hypoxia damage for several days. As shown by other studies (Le Pape et al., 2015, 2017a, 2017b; Rodriguez-Brotons et al., 2016b), this result cannot be explained by a toxic effect of HEMOXCell on NPIs. Indeed, when O₂ tension was not limiting, HEMOXCell increased LDH release together with an increase of the NPI ATP content, suggesting an unchanged proportion of lysed cells. Although HEMOXCell binds covalently a large quantity of O_2 molecules (n = 156; Rousselot et al., 2006), so 1 g of hemoglobin carries 4.3×10^{-3} mole of O₂. It would be necessary to co-encapsulate 13 mg of hemoglobin/ml of alginate hydrogel to provide sufficient O₂ for 2500 IEQ of islets/ml of alginate cultured for 7 days in hypoxia. Relying only on the O₂ reservoir capacity of the molecule, the quantity of hemoglobin necessary is impracticable and does not make it possible to mitigate hypoxia for a long period in the absence of other O₂ supply. Nevertheless, we showed that addition of extracellular hemoglobin to the alginate hydrogel increased the O2 transfer rate and diffusivity through the

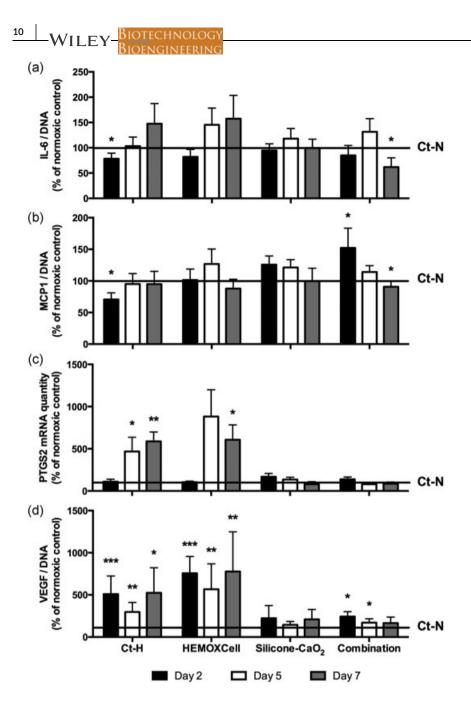


FIGURE 6 Proinflammatory and proangiogenic state of encapsulated islets under low O2 tension. NPIs were cultured for 7 days in the hypoxia chamber with or without silicone-CaO₂ and HEMOXCell. Controls were alginate-encapsulated islets cultured in normoxic or hypoxic conditions without HEMOXCell nor silicone-CaO₂ (Ct-N et Ct-H). (a), (b), and (d) respectively represent the production of IL-6, of MCP1 and VEGF by neonate pig islets (n = 6). (c) PTGS2 mRNA expression in NPIs (n = 3-6). Results from independent experiments are expressed as the mean percentage ± SEM of the normoxic control without HEMOXCell nor silicone-CaO₂ (Ct-N) (horizontal lines). *p < 0.05, **p < 0.01, ***p < 0.001 compared to Ct-N (Mann-Whitney)

immunoprotective capsule. For the first time, we quantified that $250 \,\mu$ g/ml hemoglobin increased O₂ diffusivity through the hydrogel by 37%, supporting the fact that HEMOXCell alone in normoxia induces a slight increase in the viability of macroencapsulated NPIs and MPIs. Thanks to this property, the presence of HEMOXCell in the BAP could alleviate the O₂ gradients in a macrocapsule and promote O₂ supply from an exogenous O₂ source or from vascularization around the BAP.

The silicone-CaO₂ disk provided enough O₂ to prevent an anaerobic metabolic shift and the death of islet cells induced by hypoxia for up to 7 days. Pedraza et al. (2012) highlighted that the effect of the PDMS-CaO₂ disk on the murine MIN6 cell line was only effective when O₂ concentration was limiting (high cell concentration and/or low O₂ tension), whereas a deleterious effect occurred in case of local excess in O₂. The importance to use this O₂ generating

material only in situations where hypoxia is a concern was also proposed by McQuilling, Sittadjody, Pendergraft, Farney, and Opara (2017). Similarly, in our study, the benefit of silicone-CaO₂ in preventing hypoxia-induced islet damage was observed, whereas its addition in normoxic conditions may decrease ATP content and glucose-dependent insulin secretion, and seemed to increase islet oxidative stress, as shown by increased HO-1 mRNA expression. This could be linked to the high levels of ROS produced by one disk of silicone-CaO₂, as also described for the PDMS-CaO₂ disk (Coronel, Geusz & Stabler, 2017). Indeed, partial reduction of H₂O₂ produces free radicals, which cause oxidative stress. Lower or similar hydrogen peroxide concentrations than those recorded here induced persistent beta cell dysfunction after short or long-term exposure (Fu-Liang, Xiao-Hui, Lu, Xiang-Liang & Hui-Bi, 2006; Li et al., 2009; Maechler, Jornot & Wollheim, 1999). Pancreatic beta cells are indeed sensitive to oxidative stress because of their low level of antioxidant enzyme expression (Lenzen, Drinkgern & Tiedge, 1996; Tiedge, Lortz, Munday & Lenzen, 1998).

Our study highlights the specific benefits of the O_2 -carrier and the O_2 -generator to overcome O_2 limitation in the BAP. The association of the hemoglobin and silicone-Ca O_2 takes advantages from the two individual strategies, and shows combined effects to maintain the function, metabolism, and viability of encapsulated islets in the BAP under low or high O_2 tension.

The addition of extracellular hemoglobin prevented the negative effects of the presence of silicone-CaO₂ under normoxia on NPI viability, function, and oxidative stress. As an explanation, we showed that HEMOXCell can neutralize the ROS produced by silicone-CaO₂. This is consistent with previous studies describing a superoxidase dismutase-like activity from HEMOXCell (Le Pape et al., 2015; Rousselot et al., 2006). HEMOXCell may also have a catalase-like activity leading to the conversion of H₂O₂ into O₂ and H₂O, as described for some others hemoglobins (González-Sánchez, García-Carmona, Macl & Valero, 2011). When used as oxygen-carrier or blood substitute, hemoglobins extracted from red blood cells have shown the main disadvantage of inducing oxidative stress and ROS production linked to hemoglobin degradation and heme toxicity (Alayash, 2014; Eversea & Hsia, 1997). We described here that a naturally-occurring extracellular hemoglobin did not produce ROS in the islet culture conditions and did not induce overexpression of the oxidative stress marker HO-1 in NPIs. Therefore, the hemoglobin may reduce oxidative stress produced by O2-generation via hydration of solid peroxides, and promote its integration in the BAP.

According to Pedraza et al. (2012), the main drawback of an O₂generating biomaterial, such as silicone-CaO₂, within the BAP, is generation of detrimental O2 gradients, resulting in both hypoxic and hyperoxic stress. In our study, the capacity of HEMOXCell to increase O2 diffusivity in the alginate macrocapsule was demonstrated. This property could help to better buffer O₂ tension in the BAP supplied by the O₂-generating biomaterial or, in the long term, by vascularization around the BAP. However, the angiogenic potential of pancreatic islets is correlated to the decrease of O2 tension (Coronel et al., 2017; Vasir et al., 1998), and overcoming the problem of hypoxia in the BAP could delay revascularization of the graft surface. Consistently, providing O_2 through the addition of silicone-CaO₂ reverts beneficial secretion of VEGF by NPIs cultured in a hypoxic environment. A specific increase in VEGF secretion in the presence of the hemoglobin under normoxia was also observed. This suggests that the hemoglobin may have a specific effect on proangiogenic pathway activation. Therefore, the presence of HEMOXCell could improve BAP engraftment by maintaining a beneficial proangiogenic signal without O₂ limitation.

Low oxygen tension has been shown to induce a proinflammatory state in pancreatic islets (Brandhorst et al., 2016; de Groot et al., 2003; Goto et al., 2010; Hals, Rokstad, Strand, Oberholzer & Grill, 2013; Rodriguez-Brotons et al., 2016a), which may lead to activation of an immune response toward the graft (Vivot et al., 2014). Rodriguez-Brotons et al. (2016b) showed that the hemoglobin significantly

BIOTECHNOLOGY BIOENGINEERING

increased PTGS2 expression compared to a hypoxic control. In our conditions, no specific effect from HEMOXCell alone on the expression of PTGS2 was observed. The combination of HEMOXCell with the silicone-CaO₂ disk even prevented the increased proinflammatory state of NPIs under low O₂ tension by decreasing hypoxiainduced PTGS2 overexpression. Therefore, correction of islet hypoxia in the BAP should decrease secretion of proinflammatory molecules by encapsulated islets and prevent activation of a deleterious hypoxia, improvements of islet microenvironment in the BAP should also be considered to enhance beta cell survival and function (Llacua, Faas & De Vos, 2018).

This study provides compelling evidence that incorporation of HEMOXCell in alginate confers further advantages to the BAP. First, the hemoglobin should overcome the obstacle of an in vivo use of silicone-CaO₂ by (a) neutralizing ROS produced by silicone-CaO₂, (b) homogenizing oxygen concentration in the BAP by increasing its diffusivity from the oxygen provider to the pancreatic islets, and (c) favoring BAP surface neovascularization by increasing the release of proangiogenic VEGF. Finally, the increase in O₂ diffusivity with the extracellular hemoglobin could also make it possible to create a thicker BAP or to increase islet density in the BAP. To ensure physiological O₂ supply to pancreatic islets in the BAP, it will be necessary to design an oxygenation strategy meeting specific islet requirements by optimizing islet density, silicone-CaO₂, and hemoglobin concentrations in the BAP. This promising O2-solution could also be used in other applications requiring enhanced O₂ supply such as islet isolation procedures, organ preservation, and in other tissue engineering devices or industrial bioprocesses.

ACKNOWLEDGMENTS

The authors are very grateful to Professor J. M. for the kind gift of the MIN6 cell line, and to C. L., M. L., and I. P. for their technical help. This study was supported by the National Research Agency (ECTIS IHU program, ANR-10-IBHU-005, France), the Pays de la Loire Region (Xenothera program, 2011-12961, France) and the University of Nantes (Interdisciplinary program, 2017-2203).

Nomenclature (in order of use)

T1D	Type 1 diabetes
BAP	bioartificial pancreas
NPIs	neonate pig islets
pO ₂	partial O_2 pressure
CaO ₂	calcium peroxide
ROS	reactive oxygen species
H_2O_2	hydrogen peroxide
Silicone-CaO ₂	silicone-encapsulated calcium peroxide device
AU	absorbance unit
RLU	relative light unit
PDK1	Pyruvate dehydrogenase kinase 1
HO-1	Heme oxygenase 1

PTGS2	Prostaglandin-endoperoxide synthase 2
MCP1	Monocyte chemoattractant protein 1
VEGF	vascular endothelial growth factor
MPIs	MIN6 pseudo-islets.

ORCID

Anne Mouré
http://orcid.org/0000-0002-1891-3698
Eric Olmos
http://orcid.org/0000-0001-9063-0855
Jean-Marie Bach
http://orcid.org/0000-0002-5265-8854
Mathilde Mosser
http://orcid.org/0000-0003-3556-292X

REFERENCES

- Alayash, A. I. (2014). Blood substitutes: Why haven't we been more successful? Trends in Biotechnology, 32(4), 177–185. https://doi.org/10. 1016/j.tibtech.2014.02.006.Blood
- Avila, J. G., Wang, Y., Barbaro, B., Gangemi, A., Qi, M., Kuechle, J., ... Oberholzer, J. (2006). Improved outcomes in islet isolation and transplantation by the use of a novel hemoglobin-based O₂ carrier. *American Journal of Transplantation*, 6(12), 2861–2870. https://doi.org/ 10.1111/j.1600-6143.2006.01551.x
- Barkai, U., Rotem, A., & de Vos, P. (2016). Survival of encapsulated islets: More than a membrane story. *World Journal of Transplantation*, 6(1), 69–90. https://doi.org/10.5500/wjt.v6.i1.69
- Brandhorst, D., Brandhorst, H., Mullooly, N., Acreman, S., & Johnson, P. R. V. (2016). High seeding density induces local hypoxia and triggers a proinflammatory response in isolated human islets. *Cell Transplantation*, 25(8), 1539–1546. https://doi.org/10.3727/096368915X689929
- Camci-Unal, G., Alemdar, N., Annabi, N., & Khademhosseini, A. (2013). Oxygen-releasing biomaterials for tissue engineering. *Polymer International*, 62(6), 843–848. https://doi.org/10.1002/pi.4502
- Cantley, J., Walters, S. N., Jung, M. H., Weinberg, A., Cowley, M. J., Whitworth, P. T., ... Grey, S. T. (2012). A preexistent hypoxic gene signature predicts impaired islet graft function and glucose homeostasis. *Cell Transplantation*, 22(11), 2147–2159. https://doi.org/10. 3727/096368912X658728
- Carlsson, P., Palm, F., Andersson, A., & Liss, P. (2001). Markedly decreased oxygen tension in transplanted rat pancreatic islets irrespective of the implantation site. *Cell*, 50, 489–495. https://doi.org/10.2337/diabetes. 50.3.489
- Carlsson, P. O., & Palm, F. (2002). Oxygen tension in isolated transplanted rat islets and in islets of rat whole-pancreas transplants. *Transplant International*, 15(11), 581–585. https://doi.org/10.1111/j.1432-2277. 2002.tb00112.x
- Carlsson, P. O., Espes, D., Sedigh, A., Rotem, A., Zimerman, B., Grinberg, H., ... Korsgren, O. (2018). Transplantation of macroencapsulated human islets within the bioartificial pancreas βAir to patients with type 1 diabetes mellitus. American Journal of Transplantation, 18, 1–10. https://doi.org/10.1111/ajt.14642
- Coronel, M. M., Geusz, R., & Stabler, C. L. (2017). Mitigating hypoxic stress on pancreatic islets via in situ oxygen-generating biomaterial. *Biomaterials*, 129, 139–151. https://doi.org/10.1016/j.biomaterials.2017.03.018
- Dahlgren, C., Karlsson, A., & Bylund, J. (2007). Measurement of respiratory burst products generated by professional phagocytes. *Methods in Molecular Biology*, 412, 349–363. https://doi.org/10.1007/978-1-59745-467-4_23
- Dionne, K. E., Colton, C. K., & Lyarmush, M. (1993). Effect of hypoxia on insulin secretion by isolated rat and canine islets of Langerhans. *Diabetes*, 42(1), 12–21. https://doi.org/10.2337/diab.42.1.12
- Dufrane, D., Goebbels, R. -M., & Gianello, P. (2010). Alginate macroencapsulation of pig islets allows correction of streptozotocin-induced diabetes in primates up to 6 months without immunosuppression.

Transplantation, 90(10), 1054–1062. https://doi.org/10.1097/TP. 0b013e3181f6e267

- Dulong, J.-L., & Legallais, C. (2007). A theoretical study of oxygen transfer including cell necrosis for the design of a bioartificial pancreas. *Biotechnology and Bioengineering*, 96(5), 990–998. https://doi.org/10. 1002/bit.21140
- Emamaullee, J. A., Shapiro, J. A. M., Rajotte, R. V., Korbutt, G., & Elliott, J. F. (2006). Neonatal porcine islets exhibit natural resistance to hypoxia-induced apoptosis. *Transplantation*, 82(7), 945–952. https:// doi.org/10.1097/01.tp.0000238677.00750.32
- Elliott, R. B. (2011). Towards xenotransplantation of pig islets in the clinic. Current Opinion in Organ Transplantation, 16(2), 195–200. https://doi. org/10.1097/MOT.0b013e3283449dec
- Eversea, J., & Hsia, N. (1997). The toxicities of native and modified hemoglobins. Free Radical Biology & Medicine, 22(6), 1075–1099. https://doi.org/10.1016/S0891-5849(96)00499-6
- Forget, A., Staehly, C., Ninan, N., Harding, F. J., Vasilev, K., Voelcker, N. H., & Blencowe, A. (2017). Oxygen-releasing coatings for improved tissue preservation. ACS Biomaterials Science and Engineering, 3(10), 2384– 2390. https://doi.org/10.1021/acsbiomaterials.7b00297
- Fu-Liang, X., Xiao-Hui, S., Lu, G., Xiang-Liang, Y., & Hui-Bi, X. (2006). Puerarin protects rat pancreatic islets from damage by hydrogen peroxide. *European Journal of Pharmacology*, 529(1–3), 1–7. https://doi. org/10.1016/j.ejphar.2005.10.024
- Giuliani, M., Moritz, W., Bodmer, E., Dindo, D., Kugelmeier, P., Lehmann, R., ... Weber, M. (2005). Central necrosis in isolated hypoxic human pancreatic islets: Evidence for postisolation ischemia. *Cell Transplantation*, 14(1), 67–76. https://doi.org/10.3727/00000005783983287
- González-Sánchez, M. I., García-Carmona, F., Macià, H., & Valero, E. (2011). Catalase-like activity of human methemoglobin: A kinetic and mechanistic study. Archives of Biochemistry and Biophysics, 516(1), 10–20. https://doi.org/10.1016/j.abb.2011.09.006
- Goto, M., Imura, T., Inagaki, A., Ogawa, N., Yamaya, H., Fujimori, K., ... Satomi, S. (2010). The impact of ischemic stress on the quality of isolated pancreatic islets. *Transplantation Proceedings*, 42(6), 2040– 2042. https://doi.org/10.1016/j.transproceed.2010.05.101
- de Groot, M., Schuurs, T. A., Keizer, P. P. M., Fekken, S., Leuvenink, H. G. D., & Van schilfgaarde, R. (2003). Response of encapsulated rat pancreatic islets to hypoxia. *Cell Transplantation*, 12(8), 867–875. https://doi.org/10.3727/00000003771000219
- Hals, I. K., Rokstad, A. M., Strand, B. L., Oberholzer, J., & Grill, V. (2013). Alginate microencapsulation of human islets does not increase susceptibility to acute hypoxia. *Journal of Diabetes Research*, 2013, 374925. https://doi.org/10.1155/2013/374925
- Jansson, L., & Carlsson, P.-O. (2002). Graft vascular function after transplantation of pancreatic islets. *Diabetologia*, 45(6), 749–763. https://doi.org/10.1007/s00125-002-0827-4
- Jones, G. L., Juszczak, M. T., Hughes, S. J., Kooner, P., Powis, S. H., & Press, M. (2007). Time course and quantification of pancreatic islet revascularization following intraportal transplantation. *Cell Transplantation*, 16(5), 505–516. https://doi.org/10.3727/00000007783464993
- Khattak, S. F., Chin, K., Bhatia, S. R., & Roberts, S. C. (2007). Enhancing oxygen tension and cellular function in alginate cell encapsulation devices through the use of perfluorocarbons. *Biotechnology and Bioengineering*, 96(1), 156–166. https://doi.org/10.1002/bit.21151
- Kim, J., Tchernyshyov, I., Semenza, G. L., & Dang, C. V. (2006). HIF-1mediated expression of pyruvate dehydrogenase kinase: A metabolic switch required for cellular adaptation to hypoxia. *Cell Metabolism*, 3(3), 177–185. https://doi.org/10.1016/j.cmet.2006.02.002
- Komatsu, H., Cook, C., Wang, C. H., Medrano, L., Lin, H., Kandeel, F., ... Mullen, Y. (2017). Oxygen environment and islet size are the primary limiting factors of isolated pancreatic islet survival. *PLoS One*, *12*(8), 1–17. https://doi.org/10.1371/journal.pone.0183780
- Korbutt, G. S., Elliott, J. F., Ao, Z., Smith, D. K., Warnock, G. L., & Rajotte, R. V. (1996). Large-scale isolation, growth, and function of porcine

neonatal islet cells. Journal of Clinical Investigation, 97(9), 2119–2129. https://doi.org/10.1172/JCI118649

- Lablanche, S., Borot, S., Wojtusciszyn, A., Bayle, F., Tétaz, R., Badet, L., ... Benhamou, P. Y. (2015). Five-year metabolic, functional, and safety results of patients with Type 1 diabetes transplanted with allogenic islets within the Swiss-French GRAGIL network. *Diabetes Care*, 38(9), 1714–1722. https://doi.org/10.2337/dc15-0094
- Lai, Y., Brandhorst, H., Hossain, H., Bierhaus, A., Chen, C., Bretzel, R. G., & Linn, T. (2009). Activation of NFκB dependent apoptotic pathway in pancreatic islet cells by hypoxia. *Islets*, 1(1), 19–25. https://doi.org/10. 4161/isl.1.1.8530
- Le Pape, F., Bossard, M., Dutheil, D., Rousselot, M., Polard, V., Férec, C., ... Zal, F. (2015). Advancement in recombinant protein production using a marine oxygen carrier to enhance oxygen transfer in a CHO-S cell line. *Artificial Cells, Nanomedicine, and Biotechnology*, 43(3), 186–195. https://doi.org/10.3109/21691401.2015.1029632
- Le Pape, F., Cosnuau-Kemmat, L., Richard, G., Dubrana, F., Férec, C., Zal, F., ... Delépine, P. (2017a). HEMOXCell, a new oxygen carrier usable as an additive for mesenchymal stem cell culture in platelet lysatesupplemented media. Artificial Organs, 41(4), 359–371. https://doi.org/ 10.1111/aor.12892
- Le Pape, F., Richard, G., Porchet, E., Sourice, S., Dubrana, F., Férec, C., & Leize, E. (2017b). Adhesion, proliferation and osteogenic differentiation of human MSCs cultured under perfusion with a marine oxygen carrier on an allogenic bone substitute. *Artificial Cells, Nanomedicine, and Biotechnology*, 46(1), 1–13. https://doi.org/10.1080/21691401.2017.1365724
- Lee, E. M., Jung, J. I., Alam, Z., Yi, H. G., Kim, H., Choi, J. W., & Ahn, C. (2017). Effect of an oxygen-generating scaffold on the viability and insulin secretion function of porcine neonatal pancreatic cell clusters. *Xenotransplantation*, 25(2), 1–12. https://doi.org/10.1111/xen.12378
- Lenzen, S., Drinkgern, J., & Tiedge, M. (1996). Low antioxidant enzyme gene expression in pancreatic islets compared with various other mouse tissues. *Free Radical Biology and Medicine*, 20(3), 463–466. https://doi.org/10.1016/0891-5849(96)02051-5
- Li, N., Brun, T., Cnop, M., Cunha, D. A., Eizirik, D. L., & Maechler, P. (2009). Transient oxidative stress damages mitochondrial machinery inducing persistent β-cell dysfunction. *Journal of Biological Chemistry*, 284(35), 23602–23612. https://doi.org/10.1074/jbc.M109.024323
- Llacua, L. A., Faas, M. M., & De Vos, P. (2018). Extracellular matrix molécules and their potential contribution to the function of transplanted pancreatic islets. *Diabetologia*, 61, 1261–1272. https:// doi.org/10.1007/s00125-017-4524-8
- Ludwig, B., Ludwig, S., Steffen, A., Knauf, Y., Zimerman, B., Heinke, S., ... Bornstein, S. R. (2017). Favorable outcome of experimental islet xenotransplantation without immunosuppression in a nonhuman primate model of diabetes. *Proceedings of the National Academy of Sciences*, 114, 201708420–201711750. https://doi.org/10.1073/pnas.1708420114
- Ludwig, B., Reichel, A., Steffen, A., Zimerman, B., Schally, A. V., Block, N. L., ... Bornstein, S. R. (2013). Transplantation of human islets without immunosuppression. *Proceedings of the National Academy of Sciences*, 110(47), 19054–19058. https://doi.org/10.1073/pnas.1317561110
- Maechler, P., Jornot, L., & Wollheim, C. B. (1999). Hydrogen peroxide alters mitochondrial activation and insulin secretion in pancreatic beta cells. *The Journal of Biological Chemistry*, 274(39), 27905–27913. https://doi.org/10.1074/jbc.274.39.27905
- Matsumoto, S., Abalovich, A., Wechsler, C., Wynyard, S., & Elliott, R. B. (2016). Clinical Benefit of Islet Xenotransplantation for the Treatment of Type 1 Diabetes. *EBioMedecine*, 12, 255–262. https://doi.org/10. 1016/j.ebiom.2016.08.034
- McQuilling, J. P., Sittadjody, S., Pendergraft, S., Farney, A. C., & Opara, E. C. (2017). Applications of particulate oxygen-generating substances (POGS) in the bioartificial pancreas. *Biomaterials Science*, 5(12), 2437–2447. https://doi.org/10.1039/c7bm00790f
- Menger, M. D., Jaeger, S., Walter, P., Feifel, G., Hammersen, F., & Messmer, K. (1989). Angiogenesis and hemodynamics of microvascu-

lature of transplanted islets of Langerhans. Diabetes, 38(Suppl 1), 199-201. https://doi.org/10.2337/diab.38.1.S199

- Morini, S., Brown, M. L., Cicalese, L., Elias, G., Carotti, S., Gaudio, E., & Rastellini, C. (2007). Revascularization and remodelling of pancreatic islets grafted under the kidney capsule. *Journal of Anatomy*, 210(5), 565–577. https://doi.org/10.1111/j.1469-7580.2007.00717.x
- Moritz, W., Meier, F., Stroka, D. M., Giuliani, M., Kugelmeier, P., Nett, P. C., ... Weber, M. (2002). Apoptosis in hypoxic human pancreatic islets correlates with HIF-1α expression 1. *The FASEB Journal*, 16, 745–747. https://doi.org/10.1096/fj.01
- Naziruddin, B., Iwahashi, S., Kanak, M. A., Takita, M., Itoh, T., & Levy, M. F. (2014). Evidence for instant blood-mediated inflammatory reaction in clinical autologous islet transplantation. *American Journal of Transplantation*, 14(2), 428–437. https://doi.org/10.1111/ajt.12558
- Okere, B., Lucaccioni, L., Dominici, M., & Iughetti, L. (2016). Cell therapies for pancreatic beta-cell replenishment. *Italian Journal of Pediatrics*, 42(1), 62. https://doi.org/10.1186/s13052-016-0273-4
- Pedraza, E., Coronel, M. M., Fraker, C. a, Ricordi, C., & Stabler, C. L. (2012). Preventing hypoxia-induced cell death in beta cells and islets via hydrolytically activated, oxygen-generating biomaterials. *Proceedings* of the National Academy of Sciences, 109, 1–6. https://doi.org/10.1073/ pnas.1113560109
- Ricordi, C., Gray, D. W. R., Hering, B. J., Kaufman, D. B., Warnock, G. L., Kneteman, N. M., ... Lacy, P. E. (1990). Islet isolation assessment in man and large animals. *Acta Diabetologica Latina*, 27(3), 185–195. https://doi.org/10.1007/BF02581331
- Rodriguez-Brotons, A., Bietiger, W., Peronet, C., Magisson, J., Sookhareea, C., Langlois, A., ... Maillard, E. (2016a). Impact of pancreatic rat islet density on cell survival during hypoxia. *Journal of Diabetes Research*, 2016, 3615286. https://doi.org/10.1155/2016/3615286
- Rodriguez-Brotons, A., Bietiger, W., Peronet, C., Langlois, A., Magisson, J., Mura, C., ... Maillard, E. (2016b). Comparison of perfluorodecalin and HEMOXCell as oxygen carriers for islet oxygenation in an in vitro model of encapsulation. *Tissue engineering. Part A*, 22(23–24), 1327– 1336. https://doi.org/10.1089/ten.tea.2016.0064
- Rousselot, M., Delpy, E., Drieu la rochelle, C., Lagente, V., Pirow, R., Rees, J. F., ... Zal, F. (2006). Arenicola marina extracellular hemoglobin: A new promising blood substitute. *Biotechnology Journal*, 1(3), 333–345. https://doi.org/10.1002/biot.200500049
- Sato, Y., Inoue, M., Yoshizawa, T., & Yamagata, K. (2014). Moderate hypoxia induces β-cell dysfunction with HIF-1-independent gene expression changes. *PLoS One*, 9(12), 1–20. https://doi.org/10.1371/ journal.pone.0114868
- Sato, Y., Endo, H., Okuyama, H., Takeda, T., Iwahashi, H., Imagawa, A., ... Inoue, M. (2011). Cellular hypoxia of pancreatic beta-cells due to high levels of oxygen consumption for insulin secretion in vitro. *Journal of Biological Chemistry*, 286(14), 12524–12532. https://doi.org/10.1074/ jbc.M110.194738
- Schrezenmeir, J., Hyder, A., Vreden, M., Laue, C., & Mueller-Klieser, W. (2001). Oxygen profile of microencapsulated islets: Effect of immobilised hemoglobin in the alginate matrix. *Transplantation Proceedings*, 33(7–8), 3511–3516. https://doi.org/10.1016/S0041-1345(01)02418-6
- Shapiro, A. M. J., Ricordi, C., Hering, B. J., Auchincloss, H., Lindblad, R., Robertson, R. P., ... Lakey, J. R. T. (2006). International trial of the edmonton protocol for islet transplantation. *New England Journal of Medicine*, 355(13), 1318–1330. https://doi.org/10.1056/ NEJMoa061267
- Tiedge, M., Lortz, S., Munday, R., & Lenzen, S. (1998). Complementary action of antioxidant enzymes in the protection of bioengineered insulin-producing RINm5F cells against the toxicity of reactive oxygen species. *Diabetes*, 47(10), 1578–1585.
- Vasir, B., Aiello, L. P., Yoon, K. H., Quickel, R. R., Bonner-Weir, S., & Weir, G. C. (1998). Hypoxia induces vascular endothelial growth factor gene and protein expression in cultured rat islet cells. *Diabetes*, 47(12), 1894–1903. https://doi.org/10.2337/diabetes.47.12.1894

WILEY-BIOTECHNOLOGY BIOENGINEERING

Vivot, K., Langlois, A., Bietiger, W., Dal, S., Seyfritz, E., Pinget, M., ... Sigrist, S. (2014). Pro-inflammatory and pro-oxidant status of pancreatic islet in vitro is controlled by TLR-4 and HO-1 pathways. *PLoS One*, 9(10), 1–10. https://doi.org/10.1371/journal.pone.0107656

SUPPORTING INFORMATION

Additional supporting information may be found online in the Supporting Information section at the end of the article.

How to cite this article: Mouré A, Bacou E, Bosch S, et al. Extracellular hemoglobin combined with an O₂-generating material overcomes O₂ limitation in the bioartificial pancreas. *Biotechnology and Bioengineering*. 2019;1–14. https://doi.org/10.1002/bit.26913